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Chaos and hydrodynamics



® Hydrodynamics from the Boltzmann equation
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Here f = f(X, P, t) one-particle distribution function

® Moments of the Boltzmann equation give Navier-Stokes
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® The Boltzmann equation from statistical mechanics

The k-particle distribution function

fk — f(X17p17X27p27° . °7Xk7pk7t)

Time-evolution governed by BBGKY hierarchy
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® Truncation of the BBGKY hierarchy

p n
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1=1
Assumption of molecular chaos
2
fo ~ f

of

En —|— — -V = /d3p1d3p2d3p30(P p1lp2, p3) (f(p2,t)f(ps3,t) — f(p,t)f(pP1,1))



® Truncation of the BBGKY hierarchy
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® Linearized Boltzmann equation
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® Transport from the Boltzmann equation

Maxwell

1

n = gmpgm-f-p- <UZ>



® Transport from the Boltzmann equation

Maxwell
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Boltzmann is based on successive 2-2 collisions
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Boltzmann is based on successive 2-2 collisions
This microscopic picture is also what encodes chaotic trajectories



® A very special feature of dilute gases )
van Zon, van Beijeren,

Maxwell Dellago

n= 1m\/ (v?) 1 A= —— (= In(A7)?) = <vrel.> ~ p\/(0?)02-t0-2

3 O02_to—2 Tave 2 gm.f.p




® A very special feature of dilute gases
Y SP & van Zon, van Beijeren,

Maxwell Dellago
1 1 1 1 - \/ (v?

n = —m~/(v?) A= (= In(AT)?) ~ i) ~ py/ (V%) 02 t0-2
3 O02_to—2 Tave 2 Em.f.p.

® Transport follows from the Boltzmann equation

G0 = [(R" (.10~ R (p.10) (k.1



® A very special feature of dilute gases )
van Zon, van Beijeren,

Maxwell Dellago
1 1 1 1 - \/ (v?

n = —m~/(v?) A= —(=In(AD)?) ~ NACY ~ pr/ (V?) 09 t0-2
3 O02_to—2 Tave 2 Em.f.p.

e Can we understand chaos from a kinetic-like equation?

Ad hoc: clock equation
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® Scrambling rate/Chaos is a microscopic “particle” property

® Transport diffusion is a macroscopic collective property



® A generic system

particle picture

applies

hydro applies
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® Special case: weakly coupled dilute gas

particle picture

applies ) hydro applies
l >I
| |
0 thydro—onset tmfp
1 1
n=5my/ (v?)




particle picture

applies ) hydro applies
| 0 .
t=20 thydro—onset tmfp t = 00
1 1
n = gmy (v?)
3 02—to—2

Implies hydro/Boltzmann/kinetic theory should also know about chaos!



scrambling=chaos=ergodicity is very different from local therm.=equilibration

There is a connection:
In classical thermalization chaos is the source of ergodicity
In special situations (weakly coupled dilute gas) they are set by the same physics



—Quantaichaos from an out-of-time correlation function
Semi-classical



o A QFT way to detect chaos

® Choose

Chaos : q(t) ~ dq(0)er? C(t) ~ h*e*M with A = ALy,



® Semi-classical computation of conductivity in weak disorder

e Semiclassical regime A\ < a

Larkin, Ovchinnikov



Semi-classical computation of conductivity in weak disorder

Semiclassical regime

C(1)

AN

e

= (W), VO)"[W (), V(0)]) ~ hr*e>

A\ < a variation on Sinai billiards

Larkin, Ovchinnikov



® Semi-classical computation of conductivity in weak disorder

e Semiclassical regime A\ < a

® Nevertheless: quantum physics takes over when Larkin, Ovchinnikov

O(t) = —([W ), VO [V (), V(O)) ~ 5262 ~ 1

Ehrenfest time:

, 11 1
r — v 1=



e Careful:
In the quantum regime chaotic behavior is hard.

i.e. most quantum analogues of classical systems with chaos do
not exhibit exponential growth in this OTOC correlator.

[ | Need a Sma" Parameter e.g. GrOZdanOV, KUI(UIjan, Prosen

" |n semi-classical systems I C(t) ~ B2
" |n holography: 1 C(t) ~ i62>\t
; ~ e

Semi-classical single-trace lumps: large /V classicalization/
master field



A bound on chaos = a bound on diffusion?



® A bound on chaos Maldacena, Shenker, Stanford

= Related regulated function:

F(t) = (W(t)yV(0)yW(t)yV (0)y) ~ 1 —

= Not time ordered: but |T'FD) = Z e_§E|n>\n>

mn

F(t) =Y (TFD|(W()V(0) ® 1)(1e W()V(0))|TFD)

E(t) ~ Y (WHV(0)) (W(t)V(0))

= Analyticity in QFT demands
A< 27T



® A bound on chaos Maldacena, Shenker, Stanford

= Related regulated function:

F(t) = (W)yV(0)yW (t)yV (0)y) ~ 1 — e*M

4 __

= Not time ordered: but |T'F D) = Z e 2P n)|n) Careful:

Answer depends
on regulating.

F(t) = Z<TFD|(W(1§)V(()) @ 1)(12 W (t)V(0))|TFD) This one encodes

chaos correctly

F(t) ~ S W)V O)T W (v (0) i

Scopelliti

= Analyticity in QFT demands
A< 27T



® Black holes saturate this bound: maximal chaos

)\BH — 27

® This observation is the driving force behind SYK

Kitaev
e.g. Stanford@Strings’ 16

It would be nice to have a solvable model of holography.

theory || bulk dual anom. dim. | chaos solvable in 1/N
SYM Einstein grav. | large maximal | no
O(N) | Vasiliev 1/N 1/N yes
SYK “Us ~ lads” O(1) maximal | yes




Scrambling and diffusion

® A refined version

Clt, ) = —(W(t,2), V(O [W(t,2), V(0)]) ~ hZese7ver
gives you a “scrambling” velocity
§vLr = 2A
= First pioneered in |+| dimension systems

= Lieb-Robinson proved:

The velocity U, R is an absolute upper bound on information
spreading.

" UL R acts as en emergent lightcone.



Scrambling and diffusion

® A refined version

Clt, ) = —(W(t,2), V(O [W(t,2), V(0)]) ~ hZese7ver
gives you a “scrambling” velocity
§vLr = 2A
= First pioneered in |+| dimension systems

= Lieb-Robinson proved:

The velocity U, R is an absolute upper bound on information
spreading.

" UL R acts as en emergent lightcone.

® Idea:also in other systems this butterfly/Lieb-Robinson velocity is
the maximum “speed” at which information spreads



e Diffusion is characterized by a velocity

v? v?

D~ — o~ —
T A

® Long sought goal: a fundamental quantum bound on diffusion

Q i Kovtun, Son, Starinets
s — 4dm
2 Hartnoll
D > Uine Hartman, Hartnoll, Mahajan
- T

® (Unstated) Hypothesis: U, R provides this fundamental velocity



e Diffusion is characterized by a velocity

v? v?

D~ — o~ —
T A

® Long sought goal: a fundamental quantum bound on diffusion

Q i Kovtun, Son, Starinets
s — Am

2 2 Hartnoll |
D > U?ZT:C or D< UE‘;:JC Hartman, I—Il_zlljrct::ll, Mahajan

® (Unstated) Hypothesis: U, R provides this fundamental velocity



® Semi-classical chaos in weakly coupled systems

“Surprisingly a relation of the form D ~ ’U%RT shows up in a number
of non-holographic contexts”

® Most of these are weakly coupled zero density field theory
results.

This should not be a surprise. This is the classical dilute gas
computation.



® Scrambling rate/Chaos is a microscopic “particle” property

e Diffusion is a macroscopic collective property



A kinetic equation for semi-classical chaos



® Semi-classical chaos in weakly coupled systems

“Surprisingly a relation of the form D ~ ’U%RT shows up in a number
of non-holographic contexts”

® Most of these are weakly coupled zero density field theory
results.

This should not be a surprise. This is the classical dilute gas
computation.

From the point of view what you compute it is a surprise



Scrambling in weakly coupled QFT is classical dilute gas

e Object of interest for \,vrr

C(t) = (W), VOI' W), V(0)]) ~e mr

growing mode

e Object of interest for D = g
|

Boltzmann transport only supports decaying modes:
viscosity set by smallest decay mode — relaxation time approximation



® Transport ® Scrambling/Chaos
GR(t) ~ PaDylay ([P PY, 0a])s  CO(t) ~ ([@°, *][@ap, Ped]) 5

Schwinger-Keldysh contour OTOC contour




® Transport ® Scrambling/Chaos
GR(t) ~ PaDylay ([P PY, 0a])s  CO(t) ~ ([@°, *][@ap, Ped]) 5

Schwinger-Keldysh contour OTOC contour

" |n free field theory

C(t) ~ Gr(t) = —2G3* (1) + O(\)

. . Stanford, Jeon
" |n perturbation theory Transport and Scrambling sum the same

ladder diagrams

O+ D+AD+-

FIG. 2: Resummation of ladder diagrams. The insertions of the energy-momentum tensor operator

T is denoted by the crossed dots and black dots are the vertices with the coupling constant .
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Schwinger Keldysh Con

G (plk) =

Ansatz

This Bethe-Salpeter egn
is the QFT version of the
Boltzmann equation

O+ D+AD -

E, —iw + 2l (27)4

G(plk) = 6(p3 — E2) f(p|k)

1

T 5@3—E§,) [1+/ d4/ R(g—p)é(ﬂk)]-

[1 + /(R(El —E, 1—p)+ R(E + Ep,1— p))f(l|k)] .

 f(p.t / (Ri"(p, k) — R (p, k) f(k. 1)
k



This Bethe-Salpeter egn
Schwinger Keldysh vs OTOC is the QFT version of the
Boltzmann equation

® SctheIdQ+@+@ —I_

~ 7w 0(pg - Ep) d*e ~

Golk) = £ g [1+ / i e - p)G(e\k)].
o OTOC
~ 7 0(pg — E) d*¢ sinh(B8p°/2) ~
G0k = 5~ T, [1 +/ (2m)1 sinh(569/2) R“_p)g(ak)] |
® Ansatz

G(plk) = 6(ps — E2)f(p|k)

(o4 20 )f(plR) = [ SRR (R ~ RO) Fb

1




This Bethe-Salpeter egn
Schwinger Keldysh vs OTOC is the QFT version of the

Boltzmann equation

® SctheIdQ+®+@ —I_

éﬂmm:3£f¥3;;i[1+/}i§gﬂﬂaméwwﬂ.
- 0o — E3) dérh(ﬁ /j)
5 T 0(pg — Ep 4¢ [sinh(BpY /2
S = g, i ar, [H / (2m)tsinh (50 /2 VPN W‘“)]
- )
® Ansatz

G(plk) = 6(pf — E3)f(plk)
( )
(o4 20 )f(pIR) = [| SRS (R — RO) fb
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Grozdanov, Schalm, Scopelliti,
® Transport ® Scrambling/Chaos

GR(t) ~ piﬂpyCIfBquq)abq)ab? (I)qu)cdDﬁ C(t) ~ <[(I)ab7 (I)Cd] [(I)abv (I)Cd]>5

Schwinger-Keldysh contour OTOC contour
O+ D+ +-

Boltzmann equation (net density) Kinetic equation (gross collisions)
@ pout) = [(B7(p.0) R (pI0)flt)  o.0) = [ SRR (0, K) + B (p. 1) (00
dt p7 T p) p? ) dt ) E(k) ) )

k k
purely relaxational front propagation into unstable states
f(p, t) ~ 6)\t with A <0 f(p,t) ~ e with A < Amaz > 0

Saarloos, vBeijeren,
Aleiner, Faoro, loffe

«: Rout(p, k) = R°(p,k) — 20(p — k)R (k k)



® Chaos follows from kinetic equation for gross energy exchange

im0 = [ ig (R (p. k) + R (p, k) — 20(p — k) R (k. k)) (k)

m This is derived as opposed to ad hoc clock model

k—2
d
%sz = —fu+ fi 1 +2fk1 ;_% Je

Qualitatively physics is similar (unstable front dynamics)



blue: eigenvalues A\ for SchwKeld /Boltzmann
red: eigenvalues A for OTOC /Energy-exchange
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This explicitly shows in weakly coupled dilute QFT scrambling
and diffusion are set by the same dynamics --- even though
they are not identical.
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= This explicitly shows in weakly coupled dilute QFT scrambling
and diffusion are set by the same dynamics --- even though
they are not identical.

1 1 V2
1= 3my/@?) A= (G (AT = Y T

02—to—2 Tave




® Chaos follows from kinetic equation for gross (energy) exchange

0.0 = [ SR (R (p.k) + R (p. ) — 26(p ~ 1 R™ (k. ) F(k)

® We have now shown that this holds in general:
® For bosonic and fermionic systems (Gross-Neveu model)

m Models near a QCP approached from perturbative regime
(Wilson-Fisher O(N) model)

= Shorter derivation using 2P| formalism

® In all cases off-shell Bethe-Salpeter contains both chaos and
Boltzmann transport.

= One solution ansatz: Boltzmann. Complement: Chaos
= pQFT analogue of Maxwell relation: weakly coupled dilute gas.

m Pole-skipping.... Grozdanov, Schalm, Scopelliti,
arXiv:1912.xxxx






Ultra strongly correlated systems are similar to dilute gases



® s scrambling rate related to diffusion?

2 2
(Y (Y
D~ —~ 2R
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String Theory for Condensed Matter

AdS-CFT duality

strongly coupled field theories without an energy scale (CFT) have a dual description
as a weakly coupled string theory in negatively curved space time (AdS).

....

b

Conformal fields Hot radiation
ALFRED T. KAMAJIAN

Maldacena ATMP2, 231 (1998);Witten ATMP2,253 (1998); Gubser, Klebanov, Polyakov, PLB428,105 (1998)



Holography for Strongly coupled systems

works best when d.o.f. are matrices ®;; i,jl' =1...Nwith N >1

semi-classical limit — — 0
N
N d-1,1
\\\\ minkowski
N N~ AdSy
N \\ \
\\\\\\\\\
\\ \:\\\\\\
N \\\\\\\
\\ N \\\\\\\
\\\\\\\\
) AN &
\\
IR uv - W
Z IR z

Zorr(J) = expiSTg N (@($oaas = J))

Quantum numbers Quantum numbers
Finite Temp W AdS/CFT AdS Black hole
Finite Density % W Extremal AdS black hole
Conserved Current ' Gauge field
Energy dynamics Gravity dynamics




OTOC in holography

® Shockwave calculation in AdS BH Roberts, Stanford, Susskind

F(t) =) (TFD|(W(t)V(0) ® 1)(12 W (t)V(0))|TF D)

W(t)

&




OTOC in holography

® Shockwave calculation in AdS BH

Roberts, Stanford, Susskind

F(t) =Y (TFD|(W()V(0) ® 1)(1® W()V(0))|TFD)

Y

W (t)

tSchw

V(0)



® s scrambling rate related to diffusion?

2 2
(Y (Y
D~ —~ 2R
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Blake;

® s scrambling rate related to diffusion? Davison, Fu, Georges, Gu,
Jensen, Sachdev.

For “relevant diffusion” (=irrelevant suscep)

d—0vi,

D =
Ay 27T

..similar results for massive gravity (mean-field disorder), but fails in general

Lucas, Steinberg;

Gu, Lucas, Qi
® Refinement: charged systems with mean-field disorder
= Thermal diffusivity set by horizon properties only
Dp = 77/5T Policastro, Son, Starinets
2
Z U
Dr = LR Blake, Davison, Sachdev

2z — 2 )\L



® From a physics perspective these are puzzling results:

Zorr(J) = expiSTg N (@($oaas = J))

Quantum numbers
AdS Black hole
Extremal AdS black hole
Gauge field
Gravity dynamics

Quantum numbers
Finite Temp
Finite Density
Conserved Current
Energy dynamics




® Shock waves are sound
m General metric
ds;. o = A(UV)AUAV + B(UV)g;;dz*dx? — A(U,V)h(U, Z)dUdU

= Shock wave equation

5(U) (Agh - d%h) = 32rEA%(Z2)S(U)




® Shock waves are sound
= General metric
ds;. o = A(UV)AUAV + B(UV)g;;dz*dx? — A(U,V)h(U, Z)dUdU
= Shock wave equation
B/
5(U) (Agh - dzh) = 32r EASY(Z)6(U)
= Sound perturbation from AdS/CFT

B B0
A (U, ) — 2d=h(U, ) —

WU, &) = 0

for h(U,x) ~ 6(U)h(Z) reduces to shock



® The shockwave is in Kruskal coordinates.

m Using Poincare coordinates

ds? = — f(r)di? + A7 g ik ( FOrVH, (t, r)dt® — 2Hy(t, r)dtdr + Ha(t, r) dr” ) .
f(r) ’ ’ C O f(r)

m Solution to Einstein’s Eqgns:

N\ Rl
Hy(t,r) = Hs(t,r) = <C1C'26 37”+)6 sy S Ar ) 7

k2t k2t k2+12r?|— Ty’ /N\—1
- — T T
Hsy(t,r) = (Cl e+ —(Che 37“+> e ST+ STt ) :




® Write as a sound wave.

= Obeys a diffusion relation

ik? ik?

7w7::

Wo

" 3 3ry

dr?
ds* = — f(r)dt® + G

o | dr \ 2
—C e—zwit—kzkze—(zwi—l—élm_)r* (r)f r (dt + ) .
: AT

. — dr \ >
+ 7°2de _C 6—zwot—|—zkze(zwo—4r+)r* (T)f r <dt o )
1 AT




® For the sound wave to be regular (on the horizon)

Wo = —2try = =27l , w; = 2iry = 2wl

2

ds® = — f(r)dt* + ;lz;)

2
o 02 e—iwi(t—r*(r))—l—ikz]c(r) (dt 4 ) ‘

: : dr \°
4+ T2df2 — O e Wo (t+7. (r))—l—zk:zf r (dt o )
1 T

® This regularity condition also means

k* 4+ p® =0, with u* = 6r3 = 67°1"7,
® This is the shock wave equation

(62(9@ — ,u2) h(x) =0



® More precisely:
= Sound is the physical (gauge-invariant) mode of Ay

" |n radial gauge

k2 ’—2w27“ 2
Z3:htt+( /

2
) (hxa: + hyy) + —whtz + - hzz

2k27 k k2

® |n a different gauge

21w f 2
f/ htr -+ ﬁ (2(,02 -+ f/2) ]’er,a.

" The latter reduces on the horizon to the previous calculation

Z3 = hy —

Supportis 1/U instead of §(U)



Sound at imaginary values of frequency and momentum
)\2
w="2miT =i\ , k*= —,u2 — 67T = -
UB
Hydrodynamical sound (known up to 3rd order analytically)

1 7}
Y= 4+—k — ——k*+ ...
w(k) V3 6T +

m Relaxational modes: real momentum, complex/imaginary
frequency

measures relaxation time

= Penetration depth: real frequency, complex/imaginary momentum

measures relaxation length (penetration depth)

® Doubly imaginary:“temporal response” to “spatial profile”



Sound at imaginary values of frequency and momentum

)\2
w=2miT =i\ , k*=—p?=—61°T2 = -

UB
Hydrodynamical sound (known up to 3rd order analytically)

1 7}
Y= 4+—k — ——k*+ ...
w(k) V3 6T *

Im to

)\L/27TT
3/4
1/2

1/4

~1/4




Sound at imaginary values of frequency and momentum

)\2
w=2miT =i\ , k*=—p?=—61°T2 = -

UB
Hydrodynamical sound (known up to 3rd order analytically)

1 1
w(k) = :l:ﬁk‘ — 67T—Tk2 + ... Pole-skipping:
QNM mode residue
Im to vanishes precisely at
Ay /2T w = 2mid’
L/ &T
Also happens in SYK.
3/4 [Gu, Qi, Stanford]
Direct consequence of the
1/2 existence of the shockwave
solution.
1/4 [Blake, Lee, Liu]
] Beautiful GR story:

non-unique BC
at the horizon

~1/4

[Blake, Davison, Grozdanov, Liu]



® |In generality

S = 2%2 d°x\/—¢ [R + B + Ematter]
g(r)dr? 1 5
ds® = —f(r)dt* + ) + b(r) (dg;2 + dy* + dz2) _ [f(T)Cj:Wj: (dt + ) dr)

W;I: (t, 2 7“) e—zw [t:l:fr e ,) ] +i1kz hj: (7“)

W £, = FD02Wil|,, tr-Einstein Eq.
2
D — _LE



® Is scrambling related to diffusion?



® Is scrambling related to diffusion?

= |n two-derivative gravity scrambling is a diffusive sound wave
on the horizon with

2

(Y
D =LA
AL

= This explains Blake’s observation and all previous results



® Is scrambling related to diffusion?

= |n two-derivative gravity scrambling is a diffusive sound wave
on the horizon with

2
D — VLR
AL
= This explains Blake’s observation and all previous results.

® However,

= This does not equal the diffusion constant in the CFT

n 3 D 3V (rp)
D —_— T — _D — =
CFT ST A hor D IrT
= Even though this also computed on the horizon (special to
momentum diffusion) Davison, Fu, Georges, Gu,

Jensen, Sachdev.
Blake, Davison, Sachdev



Im to

)\L/27TT

Physical diffusion 3/4
is given by the

behavior near 1/2

w1 /4

by now verified in
many models —1/4
[Blake, Davison,
Grozdanov,Liu]

Pole-skipping:

QNM mode residue
vanishes precisely at

w = 2m T’

Also happens in SYK.
[Gu, Qi, Stanford]
Direct consequence of the
existence of the shockwave
solution.

[Blake, Lee, Liu]
Beautiful GR story:
non-unique BC
at the horizon

[Blake, Davison, Grozdanov, Liu]



® A generic system

particle picture

applies

hydro applies
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(conformal/long range entangled)

ultra strongly

coupled physics

hydro applies

—
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® Is scrambling related to diffusion?

= |n two-derivative gravity scrambling is a diffusive sound wave
on the horizon with

2
D — VLR
AL
= This explains Blake’s observation and all previous results.

® However,

= This does not equal the diffusion constant in the CFT

n 3 D 3V (rp)
D —_— T — _D — =
CFT ST A hor D T y
= Even though this also computed on the horizon (special to
momentum diffusion) Davison, Fu, Georges, Gu,

Jensen, Sachdev.
Blake, Davison, Sachdey;
Blake, Davison,
Grozdanoy, Liu



® Black hole scrambling is hydrodynamics

= A revolutionary result
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Scrambling rate/Chaos is a microscopic “particle” property

Diffusion is a macroscopic collective property

A priori these are set by very different physics
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Diffusion is a macroscopic collective property

® A priori these are set by very different physics

= Except: a weakly coupled dilute gas.

Maxwell
1 2
n = gmpfm.f.p. (v?)

Famous “first” result of molecular kinetic theory



® Black hole scrambling is hydrodynamics
= A revolutionary resuit:
Scrambling rate/Chaos is a microscopic “particle” property

Diffusion is a macroscopic collective property

® A priori these are set by very different physics

= Except: a weakly coupled dilute gas.

Maxwell

1= my/?)—

02_to—2
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= Except: two-derivative holography

but now it is the macroscopic properties that set ergodicity
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And there is also a kinetic equation computing chaos!
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(conformal/long range entangled)

ultra strongly
coupled physics hydro applies
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Ultra strongly coupled systems are similar to weakly coupled dilute gases:
chaos and transport are set by the same physics.



Conclusion

|. Quantum Chaos from an out-of-time-correlation function
C(t) = —(W (), VO W), V()]) ~n2e ~1
2. Chaos and diffusion

different time scales: exception dilute gas

3. A bound on chaos = a bound on diffusion?

No, here, or trivial, or ...

4. Ultra strongly correlated systems are similar dilute gases

Scrambling and diffusion are set by the same semi-classical physics.

5. A kinetic equation for semi-classical chaos  Grozdanov, Schalm, Scopelliti,
in graphene: Klug, Scheurer, Schmalian

Gpt) = [ S8 (R (9,10 + B (p. k) — 26(p — 1R (k. K) (10



Thank you



