A hydrodynamical description for transport in the strange metal phase of cuprates

Andrea Amoretti

Università di Genova and INFN

Based on work with Martina Meinero, Daniel Brattan, Federico Caglieris, Enrico Giannini, Marco Affronte, Christian Hess, Bernd Buechner, Nicodemo Magnoli and Marina Putti

Cuprates

- Layers of $CuO₂$ planes bounded by rare earths
- Superconductivity and the most part of exotic properties happen on the $CuO₂$ plane \rightarrow 2D materials
- Universal properties despite many different compounds
- Among High- T_c superconductors Bi-2201 has a relatively low critical temperature even at optimal doping \Rightarrow ideal to test low T properties of the normal phase

Cuprates phase diagram

• Cuprates have almost the same Temperature vs doping (concentration of rare earth) phase diagram, characterized by many intertwined phases appearing at the same time.

Phase diagram, QCP and scaling laws

- QCP is supposed to affect the properties of the strange metal phase:
	- \triangleright transport coefficients should assume simple scaling laws
	- \triangleright Strong coupling: no well defined quasi-particles.

The Resistivity and Hall angle issue

 \bullet In normal Fermi liquid (magnetic field perpendicular to CuO₂ planes)

$$
\rho_{xx} \sim T^2
$$
, $\cot \theta_H = \frac{\rho_{xx}}{\rho_{xy}} \sim T^2$

• In most of the cuprates

$$
\rho_{xx} \sim T , \qquad \cot \theta_H = \frac{\rho_{xx}}{\rho_{xy}} \sim T^2
$$

• Actually in Bi-2201 is known that cot $\theta_H \sim \, T^{1.5}$

Other transport coefficients are less known

- Some of them are just dominated by lattice vibration
	- \triangleright κ_{xx} has an 80 % of lattice phonon contribution
- Transverse transport coefficients are independent of phonons contribution (typically very small signal)
	- \triangleright The Nernst coefficient N ([Wang, 2006] for a review)
	- **IF** The thermal Hall conductivity κ_{xy} (measured in LSCO [Grissonnanche, 2019] and in YBCO [Zhang, 2000][Matusiak, 2009])
	- \blacktriangleright Magnetoresistance typically B^2 suppressed

More orderings discovered recently

- Charge-density wave (CDW) order appears to be a ubiquitous feature of cuprate superconductors.
- Our material, $Bi₂Sr₂CuO₆$:
	- ▶ 2D CDW confirmed (by X-ray diffraction) to extend to optimal and over-doped region [Peng 2018],
	- \triangleright low critical temperature ($T_c \sim 10 33$ K).

Charge density wave order

- What are charge density waves?
	- \triangleright Peierls (1955) suggested periodic distortion of 1D lattice can lower total energy.
	- Start with first Brillouin zone $k = \pm \pi/a$ half filled.
	- ▶ CDW distortion \rightarrow new superlattice of spacing 2a. New first Brillouin zone band gap at $k = \pm \pi/2a$.
	- ▶ Gain in creating energy gaps can overcome loss of lattice distortion.
- Incommensurate CDW \rightarrow broken translation invariance.

CDW and pinning

As soon as the translation SB is pseudo-spontaneous (Goldstone Bosons have a small mass) the AC conductivity can have an off-axes peak [Fukuyama-Lee-Rice '78,Delacretaz 2017]

Figure: Experimental BiSCO conductivity from [Tsvetkov 1997]

$$
\sigma(\omega) = \sigma_0 + \frac{\rho^2}{\chi_{\pi\pi}} \frac{\Omega - i\omega}{(\Omega - i\omega)(\Gamma - i\omega) + \omega_0^2}
$$

- for $\omega_0^2 > \Omega^3/(\Gamma + 2\Omega)$ there is an off-axes peak
- can the Drude to off axes peak originate from the same mechanism?

CDW not only affects the conductivity

- Usually the enhancement in the Nernst effect at low T was attributed to fluctuating superconductivity
- $[Cyr$ -Choinière 2009] found a relation between T_{CDW} and the enhancement temperature

- T_{ν} is the temperature at which one recovers a Fermi Liquid expectation ($T_{\nu} \sim 2T_{CDW}$)
- CDW affects the Nernst signal also at fluctuating level

Where do we stand?

- Can one mechanism takes into account consistently all the thermo-electric transport coefficients?
- Many intertwined phases \Rightarrow difficult to uncover
- We need a metallic behavior
- Strange metals are strongly coupled by nature

Hydrodynamics might come to help

Hydrodynamics as an EFT

- At large length and time scales, only a small number of DOFs survive to become hydrodynamic modes
	- \blacktriangleright If no spontaneously broken symmetries: (almost)-conserved currents.
- EOMS are determined by symmetries. Eg in a the relativistic charged fluid there are two conserved currents:

$$
\partial_\mu J^\mu = 0, \qquad \partial_\mu T^{\mu\nu} = 0
$$

• Local thermal equilibrium: everything is function of $\mu(x)$, $T(x)$ and $u^{\mu}(x) \Rightarrow$ gradients expansion:

$$
J^{\mu} = nu^{\mu} + \mathcal{O}(\partial), \qquad T^{\mu\nu} = (n+p)u^{\mu}u^{\nu} - pg^{\mu\nu} + \mathcal{O}(\partial)
$$

Eventually one solves the EOMs order by order to find the relevant observables

Hydrodynamics VS Fermi Liquid

- Fermi liquid has well defined quasi-particles around the Fermi Surface, which interact weakly
- To see hydrodynamics effect the interaction time must be the smallest scale in the system

Hydrodynamics is the correct EFT to describe strange metals: strongly coupled materials where the relevant long lived DOF are the (almost)-conserved currents

A unified hydrodynamic picture?

Let us play simple and start with DC transport coefficients

Experiment (Please be kind here!)

- We want to measure the temperature T and magnetic field B dependence of all the thermo-electric transport coefficients
- We will restrict to transverse or electric transport coefficients to avoid phonons contribution (no κ_{xx})

 \blacktriangleright The electric conductivity ρ_{xx}

$$
\blacktriangleright
$$
 The Hall angle $\cot \theta_H = \frac{\rho_{xy}}{\rho_{xx}}$

The magnetoresistance
$$
\frac{\rho_{xx}(B) - \rho_{xx}(0)}{\rho_{xx}(0)}
$$

- **IF** The thermal Hall conductivity κ_{xy}
- \blacktriangleright The Nernst signal N
- Many coexisting phases \Rightarrow we need to properly define the temperature range where the picture is supposed to be valid

B dependence of the DC transport coefficients

- For $T < 20$ K the Nernst starts to deviate from linearity \Rightarrow Vortex effect [Wang 2006]
- For $T > 20$ K the B dependence is the one expected for a parity invariant system

T dependence of the DC transport coefficients upper bound

- Estimation of T_{ν} : the point where N/T deviates from linearity at high temperature : $T_{CDW} \sim T_{\nu}/2 = 65$ K [Cyr-Choinière 2009]
- In accordance with [Peng, 2018]

T dependence of the DC transport coefficients

• Relevant temperature interval 20 K $< T < 65$ K

Summary of experimental results

- How do experimental parameters depend on T and B ?
	- ► $\rho_{xx} \sim B^0 T$ as expected for strange metals.
	- \blacktriangleright $\Delta \rho / \rho \sim B^2 T^{-4}$
	- ► cot $\theta_H \sim B^{-1} T^{1.5}$ as expected in Bi-2201 but different from other materials (YBCO cot $\theta_H \sim B^{-1}T^2$).

$$
\blacktriangleright \kappa_{xy} \sim BT^{-3}.
$$

 $N \sim BT^{-2.5}$

Hydrodynamics with broken continuous symmetries and dissipation

The breaking of translations can be pseudo-spontaneous

- Momentum dissipation rate Γ: coupling to external lattice
- phase relaxation Ω_1 of the GBs: present as soon as translations are explicitly broken [Amoretti 2018]
- The magnetic fields $F^{xy} = B$ enters only as an external field via the Lorentz term

The total EOMs:

$$
\partial_t (n, s) + \partial_i (J^i, Q^i / T) = 0 ,
$$

$$
\partial_t \pi^i + \partial_j T^{ji} = F^{ij} J_j - \Gamma \pi^i - k_0^2 G \phi^i ,
$$

$$
\partial_t \phi_a + \partial_i J^i_{\phi_a} = -\Omega_1 \phi_a .
$$

Constitutive relations

The only missing step is to provide constitutive relations for the currents $J_i, \ Q_i / T, \ T^{ij}$ and $J_{\phi_a}^i$ to first order in the gradients expansion around the equilibrium configuration $T + \delta T$, $\mu + \delta \mu$:

$$
\frac{Q^i}{T} = s v^i - \alpha_0 \left(\partial^i \delta \mu - F^{ij} v_j \right) - \frac{\bar{\kappa}_0}{T} \partial^i \delta T - \gamma_2 \partial^i \theta_1 ,
$$
\n
$$
J^i = n v^i - \sigma_0 \left(\partial^i \delta \mu - F^{ij} v_j \right) - \alpha_0 \partial^i \delta T - \gamma_1 \partial^i \theta_1 ,
$$
\n
$$
T^{ij} = (n \delta \mu + s \delta T - (G + K) \chi_1 \theta_1) \delta^{ij} - G \chi_2 \theta_2 \epsilon^{ij}
$$
\n
$$
- \eta \left(\partial^i v^j + \partial^j v^i - \partial_k v^k \delta^{ij} \right) - \zeta \partial_k v^k \delta^{ij} + \gamma_1 B \theta_2 \delta^{ij} ,
$$
\n
$$
J_1^i = -v^i - \gamma_1 \left(\partial^i \delta \mu - F^{ij} v_j \right) - \gamma_2 \partial^i \delta T - \xi_1 \chi_1 \partial^i \theta_1 + \xi_2 \chi_2 \epsilon^{ij} \partial_j \theta_2 ,
$$
\n
$$
J_2^i = \epsilon^{ij} J_1^j ,
$$

- Transport coefficients
- Susceptibilities

Constraints

• Typical constraints for charged fluid:

$$
\sigma_0, \ \overline{\kappa}_0, \ \eta, \Gamma, \Omega_1 \geq 0 \ , \qquad \overline{\kappa}_0 \sigma_0 - T \alpha_0^2 \geq 0 \ .
$$

- Special to CDW: $\xi_1 > 0$.
- This subsequently leads to bounds on γ_1 and γ_2 :

$$
(\gamma_1^2,\gamma_2^2) \leq \left(\sigma_0,\frac{\bar{\kappa}_0}{\mathcal{T}}\right) \min \left[\frac{\xi_1}{\mathcal{K} + \mathcal{G}},\frac{\Omega_1}{\chi_{\pi\pi}\omega_0^2}\right]
$$

.

- We will assume $\gamma_{1,2}$ are small enough to be treated as vanishing.
- If we assume a relativistic covariant fixed point then

$$
\alpha_0 = -\frac{\mu \sigma_0}{T} , \qquad \bar{\kappa}_0 = \frac{\mu^2 \sigma_0}{T}
$$

The Martin-Kadanoff method

Having the modified EOMs and the constitutive relations one can apply the Martin-Kadanoff procedure

• One can cast the EOMs in the following way (q_A) are the relevant fields, s_A^0 are the sources):

$$
\partial_t q_A(t, \vec{k}) + M_A^C(\vec{k}, B) s_C(t, \vec{k}) = \chi_A^B s_B^0(\vec{k}) .
$$

• The retarded Green's function can eventually be computed

$$
-\left(l_6+i\omega\left(-i\omega l_6+M\chi^{-1}\right)^{-1}\right)\chi.
$$

Conductivities at low B

- Taking the DC transport coefficients to lowest order in B:
	- Charge resistivity: $\rho_{xx} = \frac{1}{\sigma_0 + \tilde{\sigma}} + \mathcal{O}(B^2)$.
	- ► Magnetoresistance: $\frac{\Delta \rho}{\rho} = B^2 \frac{\sigma_0^3}{n^2} \frac{\tilde{\sigma}}{(\sigma_0 + \tilde{\sigma})^2} + \mathcal{O}(B^4)$.

 \blacktriangleright Thermal Hall conductivity: $\kappa_{xy} = -BT\frac{\tilde{\sigma}^2 s}{n^4}\left(n s - 2\frac{\mu \sigma_0 n^2}{T \tilde{\sigma}}\right)$ $\left(\frac{\sigma_0 n^2}{T\tilde{\sigma}}\right) + \mathcal{O}(B^3).$

- Hall angle: $\cot \Theta_H = \frac{n}{B\tilde{\sigma}}$ $\frac{1+\frac{\sigma_0}{\tilde{\sigma}}}{1+2\frac{\sigma_0}{\tilde{\sigma}}}+\mathcal{O}(B).$
- Solvent coefficient: $N = \frac{B \sigma_0}{n^2(\sigma_0 + \tilde{\sigma})^2} \sigma_0(s + \frac{\mu}{T}) + \mathcal{O}(B^3)$.
- DC conductivities are a sum of incoherent and relaxation conductivities

$$
\sigma_{\rm DC} = \sigma_0 + \tilde{\sigma} \qquad \text{with} \qquad \tilde{\sigma} = \frac{n^2}{\chi_{\pi\pi}} \frac{\Omega_1}{\Omega_1 \Gamma + \omega_0^2} \; .
$$

• Only four variables σ_0 , $\tilde{\sigma}$, n and s. But we measure five observables - system overconstrained.

Determining the hydrodynamic variables

• What does experiment imply for our hydrodynamic variables?

In Consistency requires ρ_{xx} dominated by σ_0 at low T i.e.

$$
\rho_{xx} \sim \frac{1}{\sigma_0} \sim T ,
$$

 \blacktriangleright and $\cot\Theta_H \sim \frac{n}{R}$ $\frac{n}{B\tilde{\sigma}}\sim\mathcal{T}^{1.5}$. \blacktriangleright Using $\Delta \rho / \rho \sim T^{-4}$ fixes $n \sim T^{1.5}$ and $\tilde{\sigma} \sim T^0$.

Finally s is given through κ_{xy}

$$
\kappa_{xy} \sim \mu B \frac{\sigma_0 \tilde{\sigma}}{n^2} s \sim T^{-3} \qquad \Rightarrow \qquad s \sim T.
$$

 \triangleright s is in accordance with specific heat measurement on our sample and on YBCO [Loram 1991]

Recovering the Nernst behavior

• The Nernst coefficient behaves as

$$
N \sim \frac{\mu B \tilde{\sigma}}{nT} \sim \frac{\mu}{T \cot \Theta_H} \sim T^{-2.5}
$$

.

• The temperature range where the scaling agrees is exactly the one predicted from other principles (vortices at low T and $T_{\nu}/2$ at high T)

Outlook

- This is a consistency check of the validity of hydro
	- \triangleright We can not say anything on what is dominating $\tilde{\sigma} \Rightarrow$ need for precision spectral measurements
	- If hydro is valid down to low T the Drude to off-axes peak should be explained within the same picture
- Other cuprates have different temperature scalings for the transport coefficients (eg Hall angle and κ_{xy} in YBCO)
	- \triangleright CDW order is measured almost in every cuprates \Rightarrow try to find a consistent picture
	- \blacktriangleright Is hydro a valid description in different point of the phase diagram?

